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Reaction Kinetics in Polymer Systems 

G. S. Oshanin 1 and S. F. Burlatsky ~ 

We present both mean-field and many-particle descriptions of trapping reaction 
kinetics in systems in which traps are not randomly distributed in space, but are 
attached to the segments of polymer coils. 
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1. I N T R O D U C T I O N  

Wkhin the last two decades there has been considerable progress in the 
theoretical analysis of diffusion-controlled chemical reactions. While earlier 
work (see, e.g., refs. 1 and 2) focused on refinements of the classical 
Smoluchowski concentration gradient method, more recent developments 
have tended to emphasize the consequences of spatial fluctuations and 
fluctuation-induced kinetics. (3-11) One of the most fascinating examples of 
nontrivial fluctuation-induced behavior is provided by the trapping reac- 
tion A + B ~ B, where diffusing particles A react with immobile randomly 
scat tered traps B. Theoretical investigations of the problem have shown 
that at long times the mean-field descriptions of the reaction kinetics are 
invalid and the survival probabili ty of particle A, which we denote PA(t),  
in the large-time regime follows an anomalous stretched-exponential 
dependence(3'4) 

In Pa( t )  oc - C 2 / a + z t  a/~+2, t--* (1) 

where d is the spatial dimension and CB is the mean concentration of traps. 
Since the earliest investigations of this subject, (3'4) the problem of 

trapping reaction kinetics has attracted a growing interest, and a number 
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of variations of the problem have been studied. For example, an analysis 
of trapping kinetics in systems with multiplication of diffusive particles (5) 
has appeared, in addition to the exactly solvable one-dimensional case, (6) 
and the mobile trap model. (7) These problems have also been tackled for 
diffusion on fractal structures (see, e.g., refs. 12-14). Aside from the 
investigations of the kinetic problems, there have been a number of works 
dealing with the nonanalytic dependence of the diffusion constant (15~ and 
mean trapping time (16~ on the concentration of traps, and the dependence 
of the steady-state survival probability upon the intensity of an external 
source of particles in Euclidean dimension d =  3 (see ref. 17) as well as in 
low-dimensional and fractal spaces. (18'19) 

One can remark that the remarkable asymptotic form of Eq. (1) is a 
mathematical abstraction and is irrelevant to real physical systems, since it 
can only be observed at astronomically large times when the survival 
probability is extremely small. There is some disagreement among different 
authors concerning the question of how large t and how small Pa(t) must 
be to ensure the utility of the asymptotic form. Klafter e t  al. (2~ suggested 
from their simulations that Eq. (1) is valid for values of t such that PA(t) < 
10 21 in d =  2 dimensions. Using a combination of exact enumeration and 
simulations, Weiss e t  al. (8) have found that Eq. (1) is valid for PA(t)< 
10 -I3 . However, some recent studies of trapping reactions proceeding in 
restricted geometries--in dense percolation-like systems, (21'22) in crystals 
with topological defects, (23~ and on fractals(12-14)--suggest that a fluctua- 
tion-induced behavior, similar to that given in Eq. (1), can be observed 
beginning at more reasonable times. 

In this contribution we summarize several results concerning trapping 
reaction kinetics in systems with some other types of geometrical restric- 
t i o n s - i n  systems where traps B are not randomly arranged, but rather are 
attached to segments of polymer chains, randomly distributed in a solvent. 
We show that the kinetics of trapping in such systems is mainly determined 
by correlations in trap placement and spatial fluctuations are decisive from 
very early times. 

An outline of this paper is an follows: In Section 2 we discuss the 
mean-field solution, based on Smoluchowski-type arguments. In Section 3 
we study the probability distribution for the existence of trap-free volumes 
in polymer solution and present rigorous results for the case of Gaussian 
chains. The case of non-Gaussian chain conformations is also analyzed. In 
Section 4 we discuss the explicit dependences that characterize fluctuation- 
induced trapping kinetics in polymer systems. Finally, in Section 5 we 
consider the case of distant reactions, i.e., direct energy transfer from an 
excited immobile donor molecule A to aeceptors B placed on polymer 
chains. 
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2. M E A N - F I E L D  T R E A T M E N T  OF TRAPPING REACTIONS 
WITH POLYMERS 

Let us present the mean-field description (24~ of the trapping kinetics in 
terms of Smoluchowski-type arguments. Consider a system of mutually- 
independent polymer chains, containing N absorbing particles each, 
placed in a sea of diffusing (with diffusion constant D) particles, initially 
scattered uniformly throughout space with concentration 1. Following 
Smoluchowski, we write down the survival probability PA(t) of particles A 
as follows: 

P A ( t ) : e x p [ - - n o h f d z K s ( r ) ]  (2) 

where rich is the mean concentration of polymer chains and H,(~) is the rate 
at which particles A react with a single polymer chain containing N 
absorbing particles. To calculate this rate constant, one has to solve a 
diffusion equation 

OC(r, t)/~?t = D AC(r, t) (3a) 

subject to absorbing boundary conditions on the surfaces of N traps 
arranged in a polymer chain, 

C ( r ~ _ ~  S ~ . t ) = 0  (3b) 

in addition to the initial and boundary conditions 

C(r, t = O) = 1, C(r --* 0% t) = 1 (3c) 

The rate is defined as the sum of fluxes 

j = 1 I r R j l  = R 

where Rj is the radius vector of j th  trap and R is the reaction radius. 
The Laplace-transformed solultion to Eq. (3) can be written down as 

follows: 
N 

C(r, 2) = 1/)4 + ~ B(i, 2) G(lr - R,I) (5) 
1 

where G(r) is the Cauchy function of Eq. (3). In d =  3, 

G(l r -R j ] )  oc e x p ( - t c l r - R i l ) / I r - R i ]  , ~c= (2/D) 1/2 
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The coefficients B(i, 2), i =  1, 2 ..... N, are arbitrary independent functions. 
In general, the function (5) is insufficient to satisfy the boundary conditions 
of Eq. (3b) for every reaction surface Ir - /7i l  = R, j = 1, 2,..., N. The exact 
solution of Eqs. (3) contains an infinite set of multipole-type corrections 
[VmG(r)], m =  1,2 ..... oo. However, for. the typical trap configurations 
[R i -  Rj[ >> R, for i # j, and, consequently, G([Ri -  Rj[ - R), ,~G(IR~- Rj[). 
Within this approximation N boundary conditions (3b) can be satisfied by 
the function (5) with an appropriate set of B(i, 2). One can show that at 
low concentration of traps (e=NR3/a3N3/2~ 1, a is the mean distance 
between neighboring traps, which equals the chain segment length) such an 
approximation is quite acceptable and gives the leading term in expansion 
on the powers of the gas parameter e. 

Combining Eqs. (5) and (3a) , we obtain the following system of 
equations, which governs the behavior of unknown coefficients B(i, 2): 

N 

B(j, 2) + R-exp(~cR) ~ B(i, 2). G( IR j -  Ril) = -R-exp(~cR)/)~ 
i = I  

(6) 

Equation (6) holds for any chain conformation. Let us first consider the 
case of the Gaussian chain. Averaging the last equation with respect to the 
Wiener measure and passing to the continuum limit, we find the following 
integral equation (for infinitesimally small 2) 

1 

~, f B(x, 2). Ix - Yl 1/2 dx = 1, y = -,~(N/rca2) 1/2, x = ( 2 i -  N)/N 
1 

(7) 

This is the well-known Kirkwood-Riseman equation (25) and one can solve 
it explicitly by expanding the function B(x, ;t) and the kernel in a series of 
Gegenbauer polynomials. The solution is (aside from numerical multi- 
pliers) 

B(x, 2) oc aN 1/2(1 --X2)--1/4/~ -1  

Consequently, the quasistationary rate constant can be obtained as (24) 

g s ( ' c  ~ oo ) oc D a N  1/2 (8) 

i.e., it grows at a rate that is sublinear in N. This is a rather curious result 
inasmuch it contradicts apparently quite reasonable intuitive arguments. 
To be more specific, the mean radius of a coil grows as N m, and 
correspondingly, the mean concentration of monomers (traps) drops as 
N 1 -d/2, i.e., as N-1/2 in 3D. It seems quite natural to expect that screening 
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of the chosen trap, caused by the many-trap effects, is negligibly small for 
large N. However, the correlations in the trap placement lead to strong 
screening effects which have the effect of drastically decreasing the rate 
constant, i.e., the survival probability of the A particles is enhanced. 

We remark that the analogous problem of a diffusion in the presence 
of an absorbing fractal (Gaussian chain) has recently been studied by 
renormalization group methods in ref. 26. The result of Cates and 
Witten (26~ is quite similar to the result in Eq. (8), which was obtained by 
means of a simple Smoluchowski-like approach. 

It is easy to extend the result of Eq. (8) to the case of non-Gaussian 
chain conformations. It has been shown (26) that if the radius of the coil Rch 
scales with N as Rch o(2 a N  ~/~, then the rate constant Ks grows with N as 
a N  t/a~. In order words, the Smoluchowski-type rate constant depends 
linearly on the mean coil radius. 

We close this section with some remarks concerning the time- 
dependent correction terms to Eq. (8), which represent the effect of the 
depletion of particles in the immediate neighborhood of the chain. By 
taking into account the leading long-time (small-2) terms in Eq. (6), we 
obtain the asymptotic expansion of the rate constant 

Ks(t) = 47zDc~N 1/2 [ 1 + aN1/2/(rcDl )1/2] (9) 

i.e., the usual form of the Smoluchowski (27) rate constant. The only 
difference is that the correction term in Eq. (9) is proportional to the radius 
of the coil, aN1/~  but not to the much smaller reaction radius R. There- 
fore, at sufficiently long times (times of diffusion on distance Rch, 
rR oc a2N/D) the correction term dominates and the decrease of PA(t)  is 
governed by 

In PA(t) oC --F(Dt/a2)  1/2, F =  nohNa 3 (10) 

3. D I S T R I B U T I O N  OF T R A P - F R E E  V O L U M E S  IN 
P O L Y M E R  S O L U T I O N  

In this section we present the explicit form of the probability distribu- 
tion of chain-free (trap-free) volumes in polymer solution containing 
randomly distributed, mutually-independent chains. 

We mention that the problem of calculating this distribution has also 
been discussed in papers by Ohtsuki (29) and Kerstein. (3~ Ohtsuki has 
shown that the distribution drastically differs from that for uncorrelated 
traps and implies a particular form for the kinetic behavior of the reaction 
kinetics for trapping. He was also able to find the forms of such a distribu- 
tion for Gaussian coils, swollen chains, and branched polymers by means 
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of scaling arguments. Kerstein (3~ found such distribution for a system of 
infinite rigid rods randomly placed in space. 

The probability Poav(R) for the existence of a chain-free cavity of 
radius R can be found by multiplying two components 

Pcav(R) = Pena(R) P~ur(R) .(11) 

The term Pcnd(R) is the probability that there are no chains ends in this 
cavity. The second term in this equation, Psur(R), is the conditional 
probability that neither chain beginning outside the cavity crosses its 
surface. For  mutually-independent coils the distribution of their ends is a 
negative exponential of the form 

Pena(R) = exp( - 2 Vanch R a) 

where Vd is the volume of a d-dimensional unit sphere. 
The form of Psur(R) for Gaussian coils can be understood if we rewrite 

its definition: 
The distribution Psnr(R) exactly equals the probability that neither of 

the random walk trajectories will cross the surface of a static sphere of 
radius R until the effective "time" t = N, if all the starting points of these 
trajectories are uniformly distributed outside the sphere, the mean concen- 
tration being 2nch. Therefore, the distribution Psur(R) is nothing but the 
survival probability of a static particle of radius R in the presence of 
diffusing point traps (i.e., a scavenger reaction) and 

Psur(R)=exp[-2nchfXKs(N')dN '] (12) 

where Ks(N ) is the d-dimensional Smoluchowski constant, 

Ks(N) = Va_ 1D*(OC/Or)I r= R (13) 

and C(r, t) is governed by Eqs. (3) (with the replacement t ~ N )  and 
D* = a2/2d. 

It is important to note that the scavenger reaction is one of a few cases 
when the Smoluchowski approach yields an exact result, or, more 
correctly, the rigorous lower bound (see, e.g., refs. 5, 7, and 11). Hence, 
Eqs. (11) and (12) define a rigorous lower bound to the probability 
distribution Poav(R) in the case of mutually-independent Gaussian chains. 

In 3D the form of the Smoluchowski constant is well known and we 
can easily write an explicit representation of Po,~(R) as ~2s) 

Pcav(R)=exp{--gTzn~R3/3--4/3~n~haZRN[l + 2(R/cQ(6/rcN)I/2]} (14) 
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This equation actually exhibits a much slower functional dependence on R 
for R < R c h  than the comparable expression for uncorrelated trap 
placement. 

Later we present another approach (2s) which can fruitfully be applied 
to describe more general polymer structures. The value of ~ Ks(l) dl exactly 
equals the volume of the "reaction tube," i.e., a tube of cross section ~zR ~/- 1 

that surrounds the random walk trajectory. This volume, up to a numerical 
multiplier, equals the total volume of blobs (32) V b = M R  a, where the 
number of blobs is equal to M = N/L,  and L is the number of segments in 
each blob, which can be approximated by L oc (R/a)ati For a Gaussian 
chain, L oc (R/a)  2 and we reproduce Eq. (14) for Psur(R). For  swollen coils 
where the number of segments in blob scales as L oc (R/a)  1/v, where 
v = 3/d + 2, we get 

in Psur(R) = --nchNa (d+ 2)/3R2(d 1)/3 (15) 

We mention that a derivation of the mean size of a cavity (or correlation 
length ~) from Eq.(15) leads to the well-known dependence 
( R )  oc c~(nchN ) 3/4 for d =  3 (see, e.g., ref. 32). 

Next we consider the system of orientationally-disordered, long, 
rodlike molecules. Neglecting excluded-volume effects (we assume that rods 
can cross each other), we get that L oc R/a  and 

In Psur(R) = - n c h N a R  d-  1 (16) 

This expression coincides with a result of Kerstein. (3~ 
When R is less than Rch = a N  l/dj we find 

nPcav(R) = -F(R /cQ 7, 7 = d -  df, F =  n~hNa d (17) 

i.e., the probability for the existence of chain-free cavities for all the cases 
under consideration vanishes with R at a much slower rate than in systems 
of randomly distributed monomers having the same mean density. This 
fundamental difference is caused by the connectivity properties of these 
structures--for each model the probability that there are no chain segments 
in some region is entirely defined by the probability that a chain does not 
cross the surface surrounding this region. The exponent 7 is connected with 
the specific properties of chains. 

4. T R A P P I N G  R E A C T I O N S  W I T H  P O L Y M E R S  

The ensemble average of the survival probability of A particles is 
dominated by 

;j R d-1 dR Poav(R) P(R,  t) (18) PA(t) = Vd-- 1 
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where P(R, t) is the probability that a given diffusing particle A survives for 
a time t in the trap-free cavity of radius R enclosed by a trapping 
boundary. The form of P(R, t) depends, however, on the type of reaction. 
If the reaction occurs at the first encounter of A with any trap B, i.e., we 
assume perfect trapping, P(R, t) is given by 

P(R, t) w_ 41z -2 exp( -#2Dt /R  2) (19) 

where the eigenvalue /~ is an easily determined dimensionless constant. If 
not all encounters of A with B lead to absorption, i.e., trapping occurs with 
some finite probability that determines the reaction rate K, particles tend 
to be confined in the cavities between the segments due to steric 
entanglements. In such system the probability P(R, t) for R less than 
Da a I/K is given by (21'22) 

P(R, t) oc exp( - K t / a  a- 1R) (20) 

Naturally, the distribution in Eq. (20) implies a different kinetic behavior of 
the trapping reaction compared to that given in Eq. (1). In dense systems 
of randomly distributed monomeric traps it leads to the replacement of 
Smoluchowsk]-type intermediate asymptotics by the dependence PA(t) oC 
exp(--const- t  d/d+ 1).(21,22) Further on we will terms the regime associated 
with Eq. (20) the kinetic-controlled trapping (KCT) regime, and the regime 
associated with Eq. (19) the diffusion-controlled trapping (DCT) regime. 

We notice that the probability for the existence of large cavities 
(R >> Rch) is limited by the negative exponential distribution of chain ends 
Penal(R). Hence, at t ~  0o we recover the universal result of Eq. (1) for 
arbitrary chain conformation. However, the coefficient in the exponent is 
proportional to the power of nch for all the cases under consideration (but 
not to the power of a "real" concentration of traps n~hN). 

We discuss below the kinetic behavior found in the intermediate stage 
of trapping reactions of diffusive particles A with traps on polymer chains. 
For the generalized distribution, Eq. (17), in the case of perfect traps we 
obtain (omitting the special case of 2D Gaussian coils, when the spatial 
dimension and d s coincide ~31)) 

PA(t) = --2F2/'t+2(Dt/e2) ~/~+2, t < t** (21a) 

where t** =tDFN ~, tD=a2/D. For 3D gaussian coils, swollen coils, and 
rodlike molecules, ?/(? + 2) is equal to 1/3, 2/5, and 1/2, respectively. The 
corresponding values of the exponent fi are 3/2, 2, and 4. For 2D rodlike 
molecules fl = 3 and 7/(7 + 2) is equal to 1/3. Let us note that fl is always 
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larger than 1, i.e., the crossover time t** is large. In the case of imperfect 
traps for times less than t * =  lchF(tch/tD) 1+~, tch ~ l /Knch,  

In PA(t) = - - 2 F  ~/'~ + l(Kt/ad)~/7 + 1 (21b) 

and for t * <  t <  t** the formula for decay given in Eq. (21a) is valid. The 
reaction depth, which characterizes the fraction of particles A trapped until 
time t**, is given by 

6 = - I n  PA(t**) 

= 2 F [ ( D a d - Z / K ) ~ + N  "~/al] ~> 1 when' N>> 1 or K ~ 0  

i.e., the bulk of particles are trapped during the intermediate stage. 
We complete this section with estimations of the crossover times from 

the mean-field equations (2), (9), and (10) to the fluctuation-induced 
behavior of Eq. (21a) in the case of Gaussian coils. For this purpose we 
first compare the exponents in Eq. (2) [with the steady-state rate constant 
of Eq. (9)] and Eq. (21a). These exponents are equal to each other when 
t oc ~DN3/4/F1/2. Since the case of Gaussian coils is realized in concentrated 
polymer solutions, i.e., F oc 1, this time is less than vR, the time to diffuse 
a distance a N  ~/2. This implies that the steady-state mean-field regime 
associated with Eq. (9) does not exist. Next, on comparing Eqs. (21a) and 
(10), we find that they are equal to each other when t oc zD/F  2. Therefore, 
we infer that the fluctuation-induced behavior of Eq. (21a) will be observed 
from the earliest times. This is strongly supported by numerical simulations 
in systems of Gaussian coils (31) in two dimensions. However, in the case of 
swollen coils (i.e., dilute solutions, in which F ~  1) the mean-field behavior 
can be observed. 

5. D I R E C T  E N E R G Y  T R A N S F E R  IN P O L Y M E R  S Y S T E M S  

In this section we study the direct energy transfer in polymer solutions 
in which all segments of polymer chains are accedptors for single immobile 
donor molecules. (33) Here we restrict ourselves to the case of isotropic 
multipolar initeractions only. For these, the rate of energy transfer from the 
donor to an acceptor is W(r )  = CA r -n .  

The relaxation of an excited donot located at the origin due to direct 
energy transfer to acceptors at positions Ra that act independently is 
governed by 

i j 

(22) 
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where the index i extends over all chains (the K chains are embedded in a 
volume V, so that K/V=nch for K, V--* oe); and the index j extends over 
all acceptors occupying each Gaussian chain. Averaging over all configura- 
tions, we find 

e ( t ) =  (F(t,  {Ri j} ) )=  Ei,0, exp - t ~  W(Ro) 
j R0z 

The angular brackets represent an average with respect to the {R0i }, which 
are uniformly distributed with mean concentration ne = 2nob. The symbol 
ER{'-'} denotes Wiener integration along the trajectory of the ith chain 
with a starting point at Roi. Consequently, an exact average can be carried 
out, (33) which yields 

According to the Feynman-Kac  theorem, the Wiener integration in 
Eq. (23) is associated with the following Schr6dinger equation: 

~G(r, Ro, N) /~N= D*AG(r, Ro, N) -- t. W(r). G(r, R0, N) 
(24a) 

G(r, Ro, N = O) = ~5(r -- Ro); D* = a2/2d 

where 3 and 6 ( r -  Ro) are the d-dimensional Laplacian and delta function, 
respectively; and 

Equation (24a) cannot be solved exactly for physically interesting forms of 
W(r). However, we can avoid cumbersome calculations by working in 
terms of rescaled variables r = N- t 2/n- 2 and x = r- t - i/,, 2. When written 
in terms of these variables, Eq. (24a) defines the mean-field description of 
the well-known problem of the survival of an excited state, which diffuses 
(with diffusion coefficient D*) in the presence of randomly distributed 
uncorrelated acceptors. For  an extensive review of this subject see, for 
example, refs. 34-36. We emphasize, however, that Eqs. (24) contain the 
exact (not mean-field) many-particle solution to the initial problem of 
donor decay in systems with polymeric acceptors. 

We consider next the three-dimensional case. At long times the 
diffusive term in Eqs. (24) is negligible and the function ~(t)  is as 
follows(33): 

~( t )  = exp[ --2F(1 -- 3/n)(47r/3) FN ~3 ~)/n(CAt)3/n] (25) 
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i.e., a Forster-type dependence on time(37); while at intermediate times t the 
novel stretched-exponential law is valid, (33) 

qs(t) = exp{ -co(4~/3) FUl/Z(t/T)l/n-2[1 + 2~o(6/~)l/2(t/T) 1In 2] } (26) 

where the numerical factor ~o oc 1 depends on the dimension and n; and the 
characteristic time is T =  (aN1/2)n/CAN. We remark that T is the "cross- 
over" time from Eq. (26) to Eq. (25). The Forster-type dependence in 
Eq. (25) can hardly be observed, since ~(T)oc  e x p ( - N  1/2) drops off 
exponentially for large N. Last, we mention that for t < T the second term 
in brackets in Eq. (26) is small as compared to unity and the temporal 
behavior of ~(t)  is governed by the behavior of the first term. The forms 
of donor decay in d =  2 were analyzed in ref. 33. 

Next we make an effort to reproduce (25), (26) by means of another 
approach, having in mind a further extension to the case of non-Gaussian 
chain conformations. 

The energy relaxation is, in general, governed by the probability 
distribution for the existence of acceptor-free volumes. If one assumes a 
Poisson distribution of uncorrelated acceptors, the probability Pear(R) of 
having an acceptor-free volume V of radius R is P~nd(R). One can show 
that for a Poisson distribution of acceptors the ensemble-averaged decay is 

q~(t)=exp(--dVdC~ f Rd-l dR {l--exp[--tW(R)]}) 

Evaluating the integral exactly, one finds Forster decay. On the other 
hand, the saddlepoint method reproduces this decay and shows that qs(t) 
is governed by the relation ~(t)  oc Pcav(R(t)), where R(t) is defined by the 
"black sphere" relation tW(R(t))= 1. We base our further analysis on this 
expression. 

Let us now turn to the cavity-size dcistribution derived in Section 3. 
Equation (14) shows that on large scales, i.e., those above the correlation 
length R~h = aN ~/2, the acceptor distribution is Poisson, while for R < Roh 
it is inhomogeneous. Correspondingly, we can expect quite different 
temporal behavior of energy relaxation at the intermediate and large 
[defined by R(t)>Ech] times. In the large-t limit R(t) is defined by the 
relation tNW(R(t)) = 1 and, therefore, we reproduce the Forster-type result 
in Eq. (25). For R(t) less than the correlation length the situation is more 
complicated, since both the reaction and "diffusion" terms in Eq. (24a) are 
important. In this regime one must take into account two distinct reaction 
channels and the energy relaxation is governed by the effective rate 
constant (~) K~ = K. Ks/(K+ Ks), where K s = 4riD*R, and the "chemical" 
constant K oct ~ Rd-IW(R)dR. A variational argument can be invoked to 
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provide the following definition of R ( t )  for R ( t ) <  Rch: it must depend on 
t in such a way that Kjf is maximal. For Gaussian coils this requirement 
leads to the relation R ( t )  oc ( C A t / D * )  t/n-2. Substituting this scaling law 
into the second term in curly brackets in Eq. (14), we recover the decay of 
Eq. (26). 

Next we consider the case of non-Gaussian chains. The corresponding 
cavity-size dcistribution Poav(R) is given by Eqs. (11) and (17). The former 
includes both a negative exponential and a fractal term, where the first 
term is the dominant one above the correlation length. This means that the 
long-time decay in Eq. (25) is universal and independent of the polymer 
conformations. In contrast, at intermediate times the temporal behavior is 
essentially influenced only by the chain conformations. Maximizing Kerr, 
where K s oz a + R  d-ds and K is unchanged, one finds that R ( t )  scales as 
(CAt/a+)l ln-dS.  Substituting this scaling law into the second term in 
Eq. (17), we find the following form on the decay at intermediate times 

cb(t) oc exp{--nchNaz(CAt) ~ } (27) 

z = d f (n  - d) / (n  - dr), fl = ( d -  d f ) / (n  - dr) 

6. C O N C L U S I O N S  

To summarize, we have studied the trapping kinetics in systems in 
which traps are not mutually independent, but are attached to randomly 
placed polymers having arbitrary conformations. We have presented both 
a mean-field and a many-particle treatment of the reaction kinetics. 

We have shown that within the framework of a mean-field description, 
based on the Smoluchowski-type approach, the diffusive constant (which 
defines the rate at which particles react with a single chain) depends 
linearly on the mean radius of the polymer, i.e., grows sublinearly with a 
number of traps arranged in the polymer chain. Therefore, the correlations 
in trap placement lead to the strong screening effects and suppress the rate 
constant. 

Next, we have examined the probability for the existence of chain-flee 
voids in a polymer solution containing mutually independent chains. For 
Gaussian chains we have presented the rigorous forms of such distribu- 
tions. In the case of swollen coils or rodlike molecules explicit expressions 
for these distributions have been derived. We have shown that in polymer 
systems the probability for the existence of a cavity whose radius is equal 
to R is much greater than in systems of mutually independent monomers 
at the same concentration. 
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On the basis of these distributions we have Studied the trapping 
kinetics in polymer systems. We have shown that at long times the trapping 
kinetics is characterized by the universal dependence given in Eq. (1) for 
any conformations of chains. At intermediate times, which define the 
annihilation of the bulk of particles, the trapping kinetics is governed by 
the new conformation-dependent laws in Eq. (21). 

Lastly, we have studied direct incoherent donor decay in a system in 
which acceptors are not randomly placed, but are all attached to the 
segments of immobile polymer chains. We have shown that correlations in 
acceptor placement drastically influence the relaxation of probe molecules 
over the entire time domain. On the one hand, at intermediate times the 
temporal behavior is governed by the novel decay laws in Eqs. (26) and 
(27) that depend on chain conformations. These decay laws define the 
deactivation of the bulk of excited donors. On the other hand, at the long- 
time limit the universal Forster-type time dependences are restored. 
However, the dependence upon the concentration of acceptors noh N in 
Eq. (25) is suppressed by the correlation-induced screening parameter 
N(3 n)/n 
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